Carrie Miceli, PhD, on the Potential of Needle Biopsy Findings to Improve DMD Gene Therapy
The professor of microbiology, immunology, and molecular genetics at UCLA discussed how a better understanding of treatment impact on a cellular level could help improve future gene therapy approaches.
“I'd like to use this sort of molecular and cellular atlas to begin to define cellular issues that individuals might be having with gene therapy so we can understand which cellular processes might be limiting efficacy.”
The advent of gene therapy products for Duchenne muscular dystrophy (DMD), which currently include an FDA-approved therapy and a number of investigational therapies that remain in clinical or preclinical development, is rapidly transforming the landscape of care for the disease. Although, current-generation gene therapy products for DMD have room for improvement, and thus research that could lead to better gene therapy approaches is of great interest. One potential avenue for this is to gain a better understanding of the disease pathophysiology and how gene therapy impacts it.
Carrie Miceli, PhD, a professor of microbiology, immunology, and molecular genetics at University of California, Los Angeles (UCLA), presented research that involved single nucleus sequencing of needle biopsies from boys with DMD at the
Newsletter
Stay at the forefront of cutting-edge science with CGT—your direct line to expert insights, breakthrough data, and real-time coverage of the latest advancements in cell and gene therapy.
Related Articles
- Around the Helix: Cell and Gene Therapy Company Updates – September 17, 2025
September 17th 2025
- ImmunoLogic, Episode 6: "The Future of Personalized Cancer Vaccines”
September 15th 2025
- Top News in Lymphoma Cell Therapy for World Lymphoma Awareness Day 2025
September 15th 2025