Jonathan Yen, PhD, on Continuing Research With Prime Editing for Sickle Cell Disease

Video

The director of therapeutic genome engineering, St. Jude Children’s Research Hospital discussed challenges with performing prime editing in cells.

“[Prime editing] has a lot complexity, a lot of optimizations that we have to do. And we are only reaching about 40% editing in the cells, ideally, we want to go even higher. But there is another complication, on the manufacturing side, the guide RNA is little longer, because we actually include the template. And this tag RNA as we call it, it's much longer, so the manufacturing of it is actually much harder to get good material out of it and sourcing that material. I think technology has a lot of catching up to do."

Preclinical data on prime editing in mouse models of sickle cell disease (SCD) have demonstrated a reduction of red blood cell sickling in a proof-of-concept study supporting nonviral prime editing as a treatment mode in SCD. The research was completed by researchers from St. Jude Children’s Research Hospital and the Broad Institute, in which hematopoietic stem and progenitor cells (HSPCs) were transplanted from patients with SCD into immunodeficient mice after prime editing. The researchers found that the SCD allele (HBBS) was corrected to wild type (HBBA) at frequencies of 15 to 41%. The research also showed minimal off-target editing.

CGTLive spoke to Jonathan Yen, PhD, an author on the study and the director of therapeutic genome engineering at St. Jude’s, to learn more about the challenges with prime editing and facets of the technology for which research remains to be done, including understanding the safety profile and achieving higher levels of editing in HSPCs.

REFERENCE
Everette KA, Newby GA, Levine RM, et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01026-0
Recent Videos
Arun Upadhyay, PhD, the chief scientific officer and head of research, development, and Medical at Ocugen
Arun Upadhyay, PhD, the chief scientific officer and head of research, development, and Medical at Ocugen
John Brandsema, MD, a pediatric neurologist in the Division of Neurology at Children’s Hospital of Philadelphia
John Brandsema, MD, a pediatric neurologist in the Division of Neurology at Children’s Hospital of Philadelphia
Barry J. Byrne, MD, PhD, the chief medical advisor of Muscular Dystrophy Association (MDA) and a physician-scientist at the University of Florida
John Brandsema, MD, a pediatric neurologist in the Division of Neurology at Children’s Hospital of Philadelphia
Chun-Yu Chen, PhD, a research scientist at Seattle Children’s Research Institute
William Chou, MD, on Targeting Progranulin With Gene Therapy for Frontotemporal Dementia
Alexandra Collin de l’Hortet, PhD, the head of therapeutics at Epic Bio
Related Content
© 2024 MJH Life Sciences

All rights reserved.