Matthew D. Weitzman, PhD, and Matthew Charman, PhD, on Further Investigation of the Viral Reproduction Process

Video

The investigators from Children’s Hospital of Philadelphia discussed the follow-up studies they are conducting in light of their recent findings regarding DNA virus replication.

“In all these viral systems that are used for gene delivery—whether it be adenovirus, herpes virus, adeno-associated virus—there are lots of fundamental basic questions that we still don't fully understand. And the more we grasp those, the better we'll be able to make viral vectors more efficiently, [and] cheaper—and have their delivery be more effective so that we can decrease the loads that are used. Then, ultimately, we imagine there'll be lots of mixing and matching of the lessons learned from viruses—and the tools and the insights that they've given us will be applied to nonviral systems as well.”

Matthew D. Weitzman, PhD, a professor in the Department of Pathology and Laboratory Medicine at Children's Hospital of Philadelphia (CHOP), and Matthew Charman, PhD, a research associate in the Weitzman Lab at CHOP, recently published a paper in Nature which detailed the findings of their research into the DNA virus replication process. The study, carried out by the Weitzman Lab at CHOP, focused on the human adenovirus. The investigators identified the adenovirus 52 kDa protein (52K) as essential in the formation of biomolecular condensates (BMCs) from viral structural proteins in the viral replication process.1,2 Weitzman and colleagues concluded the paper by stating that their study, which included observations and experiments to examine the location of 52K during the formation of BMCs in the viral infectious cycle, could potentially inform the development of new gene delivery tools in the future.

In an interview with CGTLive™, Weitzman and Charman discussed several follow-up studies that they are now working on to expand upon the knowledge gained from their initial research. Weitzman spoke about an immediate follow-up study that the lab is now conducting to gain a deeper understanding of the regulation and coordination of 52K’s activity in the formation of structures necessary for the packaging of replicated genomes. Afterwards, Charman discussed an additional follow-up study that he is focused on, which will investigate the feasibility of creating a tool based on their findings that can harness the replication process in vitro for various applications.

REFERENCES
1. Charman M, Grams N, Kumar N, et al. A viral biomolecular condensate coordinates assembly of progeny particles. Nat Med. Published online April 5, 2023. doi:10.1038/s41586-023-05887-y
2. CHOP researchers reveal complex assembly process involved in DNA virus replication. News release. Children’s Hospital of Philadelphia. April 5, 2023. Accessed April 5, 2023. https://www.prnewswire.com/news-releases/chop-researchers-reveal-complex-assembly-process-involved-in-dna-virus-replication-301789225.html
Recent Videos
Barry J. Byrne, MD, PhD, the chief medical advisor of Muscular Dystrophy Association (MDA) and a physician-scientist at the University of Florida
John Brandsema, MD, a pediatric neurologist in the Division of Neurology at Children’s Hospital of Philadelphia
Chun-Yu Chen, PhD, a research scientist at Seattle Children’s Research Institute
William Chou, MD, on Targeting Progranulin With Gene Therapy for Frontotemporal Dementia
Alexandra Collin de l’Hortet, PhD, the head of therapeutics at Epic Bio
David Dimmock, MBBS, on Accelerating Therapy Discovery and Approval With AI David Dimmock, MBBS, on Accelerating Therapy Discovery and Approval With AI
Joshua M. Hare, MD, on Working to Address Unmet Needs in Alzheimer Disease With Lomecel-B Cell Therapy
David Dimmock, MBBS, on a Promising Case Study of Ultra-Rare, AI-Guided, ASO Development
William Chou, MD, on Expanding Frontotemporal Dementia Gene Therapy to Both GRN and C9orf72 Mutations
Related Content
© 2024 MJH Life Sciences

All rights reserved.