E4402, the RESORT study, is a randomized controlled trial in patients with low tumor burden as defined by the GELF criteria that compared induction followed by a retreatment strategy vs induction followed by rituximab every 13 weeks until treatment failure. In patients with FL, there was no difference in time to treatment failure or OS; however, there was a prolonged time to first cytotoxic therapy in the maintenance group. Far more antibody was used in the maintenance arm with less toxicity.[47]
In MCL, the role of maintenance remains unclear, and it appears that the efficacy of maintenance rituximab is dependent on the induction chemoimmunotherapy. A survival benefit with rituximab maintenance was demonstrated in a randomized trial conducted by the European Mantle Cell Network. This trial randomized patients to R-CHOP or FCR. Those who had a response to treatment underwent a second randomization to rituximab or interferon-α maintenance. An OS benefit was seen with rituximab maintenance when data from all participants were analyzed together; however, this was driven by improved survival in those who received R-CHOP induction, with no benefit in those who received FCR.[48]
BR became a standard frontline option in MCL based on randomized noninferiority trials that showed at least equivalent efficacy when compared with R-CHOP, and an improved safety profile. The role of maintenance rituximab after BR has been studied. Rummel et al reported at the American Society of Clinical Oncology (ASCO) Annual Meeting in 2016 that there was no survival benefit in the arm receiving rituximab maintenance, with a median 4.5 years of follow-up.[49]
A strategy of preemptive rituximab has also been employed with some success in patients with MCL. The Nordic group has treated patients with rituximab at the time of MRD relapse after autologous stem cell transplant (ASCT). This has demonstrated efficiency in converting patients back to an MRD-negative state.[50] Maintenance rituximab appears to have a role following ASCT; recent data show an OS benefit for patients randomized to maintenance. The data supporting this are from the phase III LyMa study, which randomized patients to rituximab maintenance or to observation after an aggressive induction and ASCT. A statistically significant benefit in 4-year PFS and OS was seen in the rituximab maintenance arm compared with the observation arm.[51]
There is currently no clear role for maintenance in CLL or DLBCL. Rituximab maintenance has been studied in CLL, and the AGMT CLL-8a Mabtenance study demonstrated a statistically significant PFS benefit (47 months vs 35.5 months) compared with observation alone.[52] The clinical significance of this PFS benefit has been questioned given the long natural history of CLL and the duration of the benefit relative to the 2-year duration of maintenance. In DLBCL, rituximab maintenance has not shown a benefit after induction with R-CHOP.[19,53] There is, however, some evidence in a subgroup analysis to suggest that older men may benefit from prolonged exposure to rituximab.[53]
Toxicity
Overall, anti-CD20 antibodies are well-tolerated and have similar toxicity profiles. They rarely result in severe toxicities but can rarely cause viral reactivations, which will be discussed further on in this section. Hypersensitivity reactions, myelosuppression, immunosuppression, and infections are the most common toxicities of rituximab.[2,14,20,33,45] When combined with CHOP chemotherapy, rituximab adds little to the short-term toxicity of the regimen, with an increase in myelosuppression that has not been clinically significant, evidenced by higher rates of neutropenic fever or infection.[14,33] The addition of rituximab to FC has similarly added little to toxicity other than increased myelosuppression.[20] Increased toxicity can occur with extended schedules of rituximab.
In the PRIMA trial, which involved 2 years of rituximab maintenance after induction, there was an increase in grade 2–4 infections; 56% of patients in the maintenance arm and 37% of those in the observation arm experienced an infection, most of which involved the respiratory tract.[43] The toxicity of maintenance rituximab is related to the duration of therapy. In patients with FL who have a low tumor burden, the increase in toxicity with the SAKK schedule of rituximab is minimal.[45] In the RESORT trial, both the retreatment strategy and maintenance were well tolerated, but there were more grade 3–5 toxicities in the maintenance arm.[47]
Ofatumumab and obinutuzumab have similar safety profiles, with a few exceptions. The most common adverse events reported with ofatumumab include hypersensitivity reactions, infection, and neutropenia. The infusion reactions tend to be grade 1/2 in severity; grade 3 events are relatively rare. The most common grade 3 or higher adverse event associated with ofatumumab is neutropenia.[37-39] Compared with rituximab and chlorambucil, obinutuzumab and chlorambucil caused more grade 3 or higher infusion-related reactions, as well as myelosuppression.[5] This trend was also seen in the GOYA study, which compared R-CHOP and obinutuzumab-CHOP.[42]
KEY POINTS
- Anti-CD20 monoclonal antibodies have had a profound impact on the natural history of lymphoid neoplasms.
- Research involving novel, highly efficacious anti-CD20 monoclonal antibodies is underway, and these agents are being incorporated into clinical practice.
- The incorporation of clinically meaningful endpoints into trials examining novel anti-CD20 monoclonal antibodies and maintenance strategies is critically important.
Hepatitis B virus reactivation is a well-recognized risk with the use of anti-CD20 monoclonal antibodies, and guidelines recommend screening patients for hepatitis B.[3,54] Patients with a positive hepatitis B surface antigen (HBsAg) test are at high risk for severe hepatitis. With chemoimmunotherapy, patients who have a negative surface antigen test, but a positive core antibody test, are also at significant risk for reactivation. In patients treated with R-CHOP, this risk appears to be significantly higher than in those treated with CHOP alone.[55,56] The patients who are at highest risk for severe hepatitis appear to be those who have a serologic reactivation of hepatitis B with a positive hepatitis B antigen test.[57] Guidelines from the American Gastroenterological Association recommend that physicians provide antiviral prophylaxis to patients who are at high risk for reactivation during immunosuppressive therapy. The high-risk group includes patients who are HBsAg-positive and anti–hepatitis B core (HBc) antibody–positive, as well as those who are HBsAg-negative and anti-HBc antibody–positive, and who are receiving B-cell–depleting agents such as anti-CD20 monoclonal antibodies. These guidelines recommend giving prophylaxis for at least 12 months after the agents have been discontinued.[58] While the ASCO guidelines also recommend antiviral prophylaxis for patients who are HBsAg-positive and anti-HBc antibody–positive, they allow for close monitoring or prophylaxis for those who are anti-HBc antibody–positive but HBsAg-negative.[54]
A rare but catastrophic complication of rituximab therapy is reactivation of the JC virus, which leads to PML. A retrospective series of patients in whom PML developed after they received rituximab has been compiled using a multifaceted approach, including cases from several institutions, the FDA reporting system, the manufacturer’s database, and a search of the literature. While the absolute risk of PML is quite low in patients who receive rituximab, the case-fatality rate was 90% in this series, and all clinicians who use these therapies should be aware of this complication.[59] An analysis of the FDA reporting system also identified cases associated with ofatumumab and obinutuzumab use.[60] Despite these rare complications, anti-CD20 monoclonal antibodies have been a safe addition to chemotherapy and have redefined standards of care.
Conclusions
With multiple anti-CD20 monoclonal antibodies available, key issues will need to be addressed through research. Important issues include the determination of the most appropriate antibody for specific clinical scenarios and the role of extended schedules or maintenance therapy. While obinutuzumab and ofatumumab appear to be superior in certain clinical scenarios and more efficacious as single agents, the recent GOYA study is an example of the inability to generalize the success of a new anti-CD20 monoclonal antibody to another histologic subtype. The study and incorporation of rituximab biosimilar agents will also be important in controlling escalating costs associated with these agents.
The results of recent randomized clinical trials, particularly CLL11, GADOLIN, and GALLIUM, are provocative in that they are challenging current treatment paradigms. In CLL11 and GALLIUM, chemoimmunotherapy with obinutuzumab demonstrates superiority in direct comparison with therapy containing rituximab, and in GADOLIN, the benefit of the addition of obinutuzumab was demonstrated in rituximab-refractory patients.[5,6,36] The results from CLL11 and GADOLIN define a role for use of obinutuzumab in the treatment of CLL and FL patients, respectively, but the results of the GALLIUM study are somewhat more difficult to process. While it is clear that there is a statistical difference between obinutuzumab- and rituximab-containing chemoimmunotherapy, the choice of the chemotherapy backbone may influence the magnitude of that effect, with little difference evident when a bendamustine backbone is used. While CHOP and CVP backbones are also supported by category 1 evidence and are included in guidelines, bendamustine is our preferred agent and is used throughout the world for the initial treatment of patients with low-grade FL who have a high tumor burden.[3] It is our opinion that based on the available evidence, the benefit of obinutuzumab over rituximab in combination with bendamustine is questionable and requires further evaluation in the context of increased toxicity and higher costs. This is based on the abstracts presented, and we will certainly evaluate this when the final results of the GALLIUM study are published.
In current clinical practice, rituximab maintenance has a role in FL and other indolent lymphomas, as well as in MCL. The optimal schedule of rituximab and other anti-CD20 monoclonal antibodies will need to continue to be investigated, taking efficacy, toxicity, and cost into consideration. This will occur in the context of novel, targeted induction strategies, as well as maintenance with targeted agents. When researching questions involving maintenance treatment, especially with new antibodies and certain induction regimens, we feel that it is important to consider including treatment arms without maintenance. This is important because recent examples in the literature suggest that the type of induction regimen has an impact on the efficacy of maintenance.[48,49]
Appropriate endpoints for future clinical trials will need to be defined, particularly for indolent histologies and maintenance therapy. Certainly, it is indisputable that OS is a clinically relevant endpoint; however, in histologic subtypes with long natural histories, it can be very difficult to demonstrate a benefit in OS within a reasonable follow-up period. Prolongation of PFS is of questionable value and may not be a good surrogate for patient benefit. Benefits in PFS must be weighed against any added toxicity and cost. In indolent histologies, patient-reported outcomes such as health-related quality of life, which were studied as part of the RESORT trial,[47] may have increased importance as a measure of clinical benefit for patients and should be considered in clinical trial design.
Anti-CD20 monoclonal antibodies have been highly effective in B-cell malignancies and have transformed the therapeutic landscape. While initially studied in the relapsed and refractory setting, they have become an integral component of initial therapy. Rituximab, in particular, is a standard of care of all induction regimens for the majority of B-cell malignancies, based on national clinical practice guidelines.[3] Obinutuzumab has also become an important agent used in clinical practice, and studies are ongoing with these and other anti-CD20 antibodies.
Financial Disclosure:The authors have no significant financial interest in or other relationship with the manufacturer of any product or provider of any service mentioned in this article.
References:
1. Maloney DG, Grillo-Lopez AJ, Bodkin DJ, et al. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol. 1997;15:3266-74.
2. Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90:2188-95.
3. Zelenetz AD, Gordon LI, Wierda WG, et al. NCCN clinical practice guidelines in oncology. B-cell lymphomas. Version 3.2017. https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf. Accessed April 13, 2017.
4. van Imhoff GW, McMillan A, Matasar MJ, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: the ORCHARRD study. J Clin Oncol. 2017;35:544-51.
5. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370:1101-10.
6. Marcus RE, Davies AJ, Ando K, et al. Obinutuzumab-based induction and maintenance prolongs progression-free survival (PFS) in patients with previously untreated follicular lymphoma: primary results of the randomized phase 3 GALLIUM study. American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 6.
7. Jurczak W, Ilidia M, Govindbabu KS, et al. A phase III efficacy and safety study of the proposed rituximab biosimilar GP2013 versus rituximab in patients with previously untreated advanced follicular lymphoma. American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 1809.
8. Coiffier B, Sancho JM, Jurczak W, et al. Pharmacokinetic and safety of CT-P10, a biosimilar candidate to the rituximab reference product, in patients with newly diagnosed advanced stage follicular lymphoma (AFL). American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 1807.
9. Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol. 2007;44:3823-37.
10. Rezvani AR, Maloney DG. Rituximab resistance. Best Pract Res Clin Haematol. 2011;24:203-16.
11. Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435-45.
12. Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104:1793-800.
13. Mossner E, Brunker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115:4393-402.
14. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235-42.
15. Feugier P, Van Hoof A, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23:4117-26.
16. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379-91.
17. Pfreundschuh M, Kuhnt E, Trumper L, et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011;12:1013-22.
18. Pfreundschuh M, Schubert J, Ziepert M, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9:105-16.
19. Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:3121-7.
20. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164-74.
21. Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127:208-15.
22. Bosch F, Ferrer A, Villamor N, et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res. 2008;14:155-61.
23. Bottcher S, Ritgen M, Fischer K, et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30:980-8.
24. Kovacs G, Robrecht S, Fink AM, et al. Minimal residual disease assessment improves prediction of outcome in patients with chronic lymphocytic leukemia (CLL) who achieve partial response: comprehensive analysis of two phase III studies of the German CLL Study Group. J Clin Oncol. 2016;34:3758-65.
25. Tan D, Horning SJ, Hoppe RT, et al. Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: the Stanford University experience. Blood. 2013;122:981-7.
26. Fisher RI, LeBlanc M, Press OW, et al. New treatment options have changed the survival of patients with follicular lymphoma. J Clin Oncol. 2005;23:8447-52.
27. Schulz H, Bohlius JF, Trelle S, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2007;99:706-14.
28. Swenson WT, Wooldridge JE, Lynch CF, et al. Improved survival of follicular lymphoma patients in the United States. J Clin Oncol. 2005;23:5019-26.
29. Forstpointner R, Dreyling M, Repp R, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2004;104:3064-71.
30. Herold M, Haas A, Srock S, et al. Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an East German Study Group Hematology and Oncology Study. J Clin Oncol. 2007;25:1986-92.
31. Marcus R, Imrie K, Belch A, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105:1417-23.
32. Marcus R, Imrie K, Solal-Celigny P, et al. Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol. 2008;26:4579-86.
33. Hiddemann W, Kneba M, Dreyling M, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106:3725-32.
34. Lenz G, Dreyling M, Hoster E, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG). J Clin Oncol. 2005;23:1984-92.
35. Wierda WG, Padmanabhan S, Chan GW, et al. Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. Blood. 2011;118:5126-9.
36. Sehn LH, Chua N, Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17:1081-93.
37. Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2010;28:1749-55.
38. Hillmen P, Robak T, Janssens A, et al. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): a randomised, multicentre, open-label phase 3 trial. Lancet. 2015;385:1873-83.
39. van Oers MH, Kuliczkowski K, Smolej L, et al. Ofatumumab maintenance versus observation in relapsed chronic lymphocytic leukaemia (PROLONG): an open-label, multicentre, randomised phase 3 study. Lancet Oncol. 2015;16:1370-9.
40. Cheson BD, Trneny M, Bouabdallah K, et al. Obinutuzumab plus bendamustine followed by obinutuzumab maintenance prolongs overall survival compared with bendamustine alone in patients with rituximab-refractory indolent non-Hodgkin lymphoma: updated results of the GADOLIN study. American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 615.
41. Pott C, Hoster E, Kehden B, et al. Minimal residual disease in patients with follicular lymphoma treated with obinutuzumab or rituximab as first-line induction immunochemotherapy and maintenance in the phase 3 GALLIUM study. American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 613.
42. Vitolo U, Trneny M, Belada D, et al. Obinutuzumab or rituximab plus CHOP in patients with previously untreated diffuse large B-cell lymphoma: final results from an open-label, randomized phase 3 study (GOYA). American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 470.
43. Salles G, Seymour JF, Offner F, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011;377:42-51.
44. Salles GA, Seymour JF, Feugier P, et al. Updated 6 year follow-up of the PRIMA study confirms the benefit of 2-year rituximab maintenance in follicular lymphoma patients responding to frontline immunochemotherapy. American Society of Hematology 55th Annual Meeting; December 7–10, 2013; New Orleans, LA. Abstr 509.
45. Ghielmini M, Schmitz SF, Cogliatti SB, et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly x 4 schedule. Blood. 2004;103:4416-23.
46. Martinelli G, Schmitz SF, Utiger U, et al. Long-term follow-up of patients with follicular lymphoma receiving single-agent rituximab at two different schedules in trial SAKK 35/98. J Clin Oncol. 2010;28:4480-4.
47. Kahl BS, Hong F, Williams ME, et al. Rituximab extended schedule or re-treatment trial for low-tumor burden follicular lymphoma: Eastern Cooperative Oncology Group protocol e4402. J Clin Oncol. 2014;32:3096-102.
48. Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367:520-31.
49. Rummel MJ, Knauf W, Goerner M, et al. Two years rituximab maintenance vs. observation after first-line treatment with bendamustine plus rituximab (B-R) in patients with mantle cell lymphoma: first results of a prospective, randomized, multicenter phase II study (a subgroup study of the StiL NHL7-2008 MAINTAIN trial). 2016 American Society of Clinical Oncology Annual Meeting; June 3-7, 2016; Chicago, IL. Abstr 7503.
50. Kolstad A, Pedersen LB, Eskelund CW, et al. Molecular monitoring and tailored strategy with pre-emptive rituximab treatment for molecular relapse; results from the Nordic Mantle Cell Lymphoma Studies (MCL2 and MCL3) with median follow-up of 8.5 years. American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 146.
51. Le Gouill S, Thieblemont C, Oberic L, et al. Rituximab maintenance after autologous stem cell transplantation prolongs survival in younger patients with mantle cell lymphoma: final results of the randomized phase 3 LyMa Trial of the Lysa/Goelams. American Society of Hematology 58th Annual Meeting; December 3–6, 2016; San Diego, CA. Abstr 145.
52. Greil R, Obrtlikova P, Smolej L, et al. Rituximab maintenance versus observation alone in patients with chronic lymphocytic leukaemia who respond to first-line or second-line rituximab-containing chemoimmunotherapy: final results of the AGMT CLL-8a Mabtenance randomised trial. Lancet Haematol. 2016;3:e317-e329.
53. Jaeger U, Trneny M, Melzer H, et al. Rituximab maintenance for patients with aggressive B-cell lymphoma in first remission: results of the randomized NHL13 trial. Haematologica. 2015;100:955-63.
54. Hwang JP, Somerfield MR, Alston-Johnson DE, et al. Hepatitis B virus screening for patients with cancer before therapy: American Society of Clinical Oncology provisional clinical opinion update. J Clin Oncol. 2015;33:2212-20.
55. Yeo W, Chan TC, Leung NW, et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J Clin Oncol. 2009;27:605-11.
56. Evens AM, Jovanovic BD, Su YC, et al. Rituximab-associated hepatitis B virus (HBV) reactivation in lymphoproliferative diseases: meta-analysis and examination of FDA safety reports. Ann Oncol. 2011;22:1170-80.
57. Hsu C, Tsou HH, Lin SJ, et al. Chemotherapy-induced hepatitis B reactivation in lymphoma patients with resolved HBV infection: a prospective study. Hepatology. 2014;59:2092-100.
58. Reddy KR, Beavers KL, Hammond SP, et al. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology. 2015;148:215-9; quiz e16-7.
59. Carson KR, Evens AM, Richey EA, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood. 2009;113:4834-40.
60. Raisch DW, Rafi JA, Chen C, Bennett CL. Detection of cases of progressive multifocal leukoencephalopathy associated with new biologicals and targeted cancer therapies from the FDA’s adverse event reporting system. Expert Opin Drug Saf. 2016;15:1003-11.