Jonathan W. Weinsaft, MD, on Working to Bring Novel Therapies to Cardiovascular Disease

Commentary
Video

The chief of cardiology at Weill Cornell Medical College discussed gene therapy research into Friedreich ataxia and more.

“We're particularly excited at the ability of genomics, proteomics and transcriptomics. To transform our understanding of cardiovascular pathophysiology, and to inform our ability to provide more personalized treatments for cardiovascular conditions we've used, we're actively exploring the power of gene therapy to treat patients with genetically mediated cardiomyopathy or genetically mediated heart failure.”

Gene therapy research is growing in relatively newer fields to the technology, including cardiology. Gene editing therapy recently made a splash in the field when promising data from the phase 1b heart-1 clinical trial (NCT05398029) were recently presented at the American Heart Association’s (AHA) Scientific Sessions 2023 in November.

heart-1 is evaluating Verve Therapeutics’ VERVE-101, an investigational gene-editing therapy intended to treat heterozygous familial hypercholesterolemia (HeFH). The therapy has been well-tolerated, and the trial is continuing to dose patients based off a positive Data Safety Monitoring Board Recommendation. Investigators observed dose-dependent decreases in blood PCSK9 and blood LDL-C percentages from baseline, some of which have lasted for up to 155 days after treatment.

CGTLive spoke with Jonathan W. Weinsaft, MD, chief of cardiology and professor of medicine at Weill Cornell Medical College, to learn more about research that Weill Cornell is engaged in with the goal of bringing more of these novel therapies to patients. He touched on a few different programs, including a gene therapy program for Friedreich Ataxia and cardiomyopathies, and basic research looking deeper into cardiovascular disease. He also noted that the center is trying to leverage AI in powering research as well.

REFERENCE
Vafai SB, Gladding PA, Scott R, et al. Safety and pharmacodynamic effects of VERVE-101 an investigational DNA Base editing medicine designed to durably inactivate the PCSK9 gene and lower LDL cholesterol – interim results of the phase 1b heart-1 trial. Presented at: AHA Scientific Sessions 2023; November 10-13; Philadelphia, Pennsylvania.

Newsletter

Stay at the forefront of cutting-edge science with CGT—your direct line to expert insights, breakthrough data, and real-time coverage of the latest advancements in cell and gene therapy.

Recent Videos
Derek Jackson, BS, MA, the vice president of cell & gene therapy product development at Pacira, and Kilian Guse, PhD, the vice president of genetic medicine platforms at Pacira
Derek Jackson, BS, MA, the vice president of cell & gene therapy product development at Pacira
Jeffrey Chamberlain, PhD
Tami John, MD
Tami John, MD
Tami John, MD
Matthew Ku, MBBS, FRACP, RACP, FRCPA/RCPA, PhD, an associate professor and the lymphoma stream lead at St Vincent’s Hospital
Saurabh Dahiya, MD, FACP, an associate professor of medicine at Stanford University School of Medicine; as well as clinical director of Cancer Cell Therapy in the Division of Blood and Marrow Transplantation and Cell Therapy at Stanford Medicine
Shahzad Raza, MD, a hematologist/oncologist at the Cleveland Clinic
Manali Kamdar, MD, the associate professor of medicine–hematology and clinical director of lymphoma services at the University of Colorado
Related Content
© 2025 MJH Life Sciences

All rights reserved.