The oncologists from MD Anderson and Memorial Sloan Kettering Cancer Centers discuss sequencing CAR T-cell therapies and other key therapies in patients with B-cell acute lymphoblastic leukemia.
The director of the Mario Lemieux Center for Blood Cancers at UPMC Hillman Cancer Center discussed strategies to manage AEs associated with CAR T therapy.
The professor of pediatric hematology/oncology at CS Mott Children’s Hospital discussed new follow-up data from the HOPE-B study presented at ASH 2022.
Karen Walker, chief technology officer, Kyverna Therapeutics, discussed the company’s CAR T-cell and regulatory T-cell technologies.
Milan Zdravkovic, MD, PhD, chief medical officer of SNIPR Biome, discussed the company’s ongoing research on targeting E Coli in the blood with CRISPR-based medication.
A prespecified interim analysis from the phase 3 TRANSFORM study showed an event-free survival benefit with the second-line therapy.
New treatment options expand management of relapsed or refractory disease.
As we learn more about genomics and identify more genes tied to rare disorders, the role of genetic counselors will become even more critical.
The chief scientific officer of the CMT Research Foundation discussed investigative cell and gene therapy approaches for treating CMT.
It was previously announced that CT103A received FDA clearance of its investigational new drug application for the treatment of relapsed/refractory (r/r) multiple myeloma.
Monalisa Ghosh, MD, discusses the role of off-the-shelf CAR T-cell therapy in patients with multiple myeloma.
A comparative analysis of the ZUMA-5 and SCHOLAR-5 trials revealed improvements in outcomes over currently available therapies.
The professor of internal medicine at UT Southwestern Medical Center shared his perspective on the current landscape of CAR-T cell therapy in the care of patients with myeloma.
The FDA has granted Fast Track designation to MeiraGTx's AAV-CNGA3 gene therapy product candidate for the treatment of achromatopsia (ACHM).
Experts discussed data from trials in lymphoma presented at ASCO 2021.
Lamont et al have presented a very clear and concise review of current gene therapy strategies in the management of squamous cell carcinoma of the head and neck. While the presentation highlighted the most important work to date in this expanding field, it also made reference to some controversies and challenges that we are now facing. With this in mind, I would like to expand on and clarify several points raised by the authors.
Overexpression by the HER2 gene plays a significant role in breast cancer pathogenesis, and the phenomenon is commonly regarded as a predictor of a poor prognosis. HER2 overexpression has been linked to sensitivity and/or resistance to hormone therapy and chemotherapeutic regimens, including CMF (cyclophosphamide, methotrexate, and fluoro-uracil) and anthracyclines. Studies of patients with advanced disease demonstrate that, despite the association of HER2 overexpression with poor prognosis, the odds of HER2-positive patients responding clinically to taxanes were greater than three times those of HER2-negative patients. Further studies in preclinical models used combination therapy for breast cancer cells that overexpress HER2, and the use of agents that interfere with HER2 function plus paclitaxel (Taxol) resulted in significant antitumor effects. [ONCOLOGY 11(Suppl):43-48, 1997]
Overexpression by the HER2 gene plays a significant role in breast cancer pathogenesis, and the phenomenon is commonly regarded as a predictor of a poor prognosis. HER2 overexpression has been linked to sensitivity and/or resistance to hormone therapy and chemotherapeutic regimens, including CMF (cyclophosphamide, methotrexate, and fluoro-uracil) and anthracyclines. Studies of patients with advanced disease demonstrate that, despite the association of HER2 overexpression with poor prognosis, the odds of HER2-positive patients responding clinically to taxanes were greater than three times those of HER2-negative patients. Further studies in preclinical models used combination therapy for breast cancer cells that overexpress HER2, and the use of agents that interfere with HER2 function plus paclitaxel (Taxol) resulted in significant antitumor effects. [ONCOLOGY 11(Suppl):43-48, 1997]
Overexpression by the HER2 gene plays a significant role in breast cancer pathogenesis, and the phenomenon is commonly regarded as a predictor of a poor prognosis. HER2 overexpression has been linked to sensitivity and/or resistance to hormone therapy and chemotherapeutic regimens, including CMF (cyclophosphamide, methotrexate, and fluoro-uracil) and anthracyclines. Studies of patients with advanced disease demonstrate that, despite the association of HER2 overexpression with poor prognosis, the odds of HER2-positive patients responding clinically to taxanes were greater than three times those of HER2-negative patients. Further studies in preclinical models used combination therapy for breast cancer cells that overexpress HER2, and the use of agents that interfere with HER2 function plus paclitaxel (Taxol) resulted in significant antitumor effects. [ONCOLOGY 11(Suppl):43-48, 1997]
Despite advances in surgery, radiotherapy, and chemotherapy, survival of patients with squamous cell carcinoma of the head and neck has not significantly improved over the past 30 years. Locally recurrent or refractory disease is particularly difficult to treat. Repeat surgical resection and/or radiotherapy are often not possible, and long-term results for salvage chemotherapy are poor. Recent advances in gene therapy have been applied to recurrent squamous cell carcinoma of the head and neck. Many of these techniques are now in clinical trials and have shown some efficacy. This article discusses the techniques employed in gene therapy and summarizes the ongoing protocols that are currently being evaluated in clinical trials. [ONCOLOGY 15(3):303-314, 2001]
Despite advances in surgery, radiotherapy, and chemotherapy, survival of patients with squamous cell carcinoma of the head and neck has not significantly improved over the past 30 years. Locally recurrent or refractory disease is particularly difficult to treat. Repeat surgical resection and/or radiotherapy are often not possible, and long-term results for salvage chemotherapy are poor. Recent advances in gene therapy have been applied to recurrent squamous cell carcinoma of the head and neck. Many of these techniques are now in clinical trials and have shown some efficacy. This article discusses the techniques employed in gene therapy and summarizes the ongoing protocols that are currently being evaluated in clinical trials. [ONCOLOGY 15(3):303-314, 2001]
Despite advances in surgery, radiotherapy, and chemotherapy, survival of patients with squamous cell carcinoma of the head and neck has not significantly improved over the past 30 years. Locally recurrent or refractory disease is particularly difficult to treat. Repeat surgical resection and/or radiotherapy are often not possible, and long-term results for salvage chemotherapy are poor. Recent advances in gene therapy have been applied to recurrent squamous cell carcinoma of the head and neck. Many of these techniques are now in clinical trials and have shown some efficacy. This article discusses the techniques employed in gene therapy and summarizes the ongoing protocols that are currently being evaluated in clinical trials. [ONCOLOGY 15(3):303-314, 2001]
In this phase III trial, investigators assessed the clinical efficacy and safety of durvalumab with or without tremelimumab with etoposide and carboplatin or cisplatin chemotherapy followed by durvalumab with or without tremelimumab maintenance therapy compared with EP alone as first-line treatment in extensive-stage small-cell lung cancer.
Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.