News


Site Logo

Topoisomerase I Inhibitors in the Combined-Modality Therapy of Lung Cancer

June 1st 2004

Locally advanced non–small-cell lung cancer represents 30% to 40%of all pulmonary malignancies. Most patients will die of the diseaseafter aggressive contemporary treatments. Therefore, significant improvementin therapeutic methods must be implemented to improveoverall survival rates. The arrival of a new generation of chemotherapeuticagents-including the taxanes, gemcitabine (Gemzar), andtopoisomerase inhibitors such as irinotecan (Camptosar) and topotecan(Hycamtin)-offers the hope of significant advances in the treatmentof lung cancer. Irinotecan and topotecan are camptothecin derivativesthat inhibit topoisomerase I enzyme. It is believed that topoisomerase Iinhibitors stabilize a DNA/topoisomerase I complex and interact withreplication machinery to cause cell death. A significant amount of datademonstrates that these topoisomerase I inhibitors also act asradiosensitizers. With the increasing data that support concurrentchemoradiation treatment for malignancies, including lung cancer andhead and neck cancers, there is an impetus to pursue the additionaldrugs that may potentially improve local control and survival. Irinotecanis undergoing early clinical trials in the combined-modality setting inseveral different disease sites. This paper will review the data on therole of camptothecin derivatives as a radiosensitizer and as a componentof combined-modality therapy for lung cancer. It is hoped thatnewer treatment strategies, like the combination of radiation andtopoisomerase I inhibitors, will have a significant impact on cure ratesin the future.


Site Logo

State-of-the-Art Treatment for Advanced NonSMQ-8211-SMQSmall-Cell Lung Cancer

December 1st 2003

Patients with locally advanced or metastatic nonSMQ-8211-SMQsmall-cell lungcancer (stage III and IV) who are not candidates for surgery and exhibitgood performance status are typically treated with concurrent radiationand platinum-based chemotherapy for disease palliation. Platinum-based chemotherapies, used alone or with radiation therapy, offera small but significant survival benefit compared with supportivecare. The incorporation of first-line agents such as gemcitabine(Gemzar), vinorelbine (Navelbine), and paclitaxel, as well as secondlineagents such as docetaxel (Taxotere), in doublet and triplet combinationshas had a further significant therapeutic impact. Randomizedtrials have shown that cisplatin-based therapy in combination with newagents results in improved 1- and 2-year survival rates in patients withadequate performance status. The 1-year survival benefit has significantlyimproved, with greater symptom relief and improved quality oflife in these patients. Thus, delaying disease progression with combinationchemotherapy appears both beneficial and cost-effective in patientswith advanced nonSMQ-8211-SMQsmall-cell lung cancer. Newer approachesSMQ-8212-SMQincluding targeting critical signaling pathways, such as tyrosine kinasereceptors, angiogenesis, and downstream signal transductionmechanismsSMQ-8212-SMQmay provide novel agents with an improved toxicity profileand the potential for better disease management.


Site Logo

Erlotinib: Preclinical Investigations

November 2nd 2003

Erlotinib (Tarceva) is an orally available selective small-moleculeinhibitor of HER1/EGFR tyrosine kinase with a 50% inhibitory concentrationof 2 nM for purified tyrosine kinase. This agent has beenshown to produce stasis or regression of tumor growth in human cancerxenograft models, including non-small-cell lung cancer models.Ongoing preclinical investigations indicate that inhibition of the MAPKand Atk signaling pathways downstream of HER1/EGFR may be requiredfor optimal antitumor effects. Erlotinib exhibits inhibition ofMAPK and Atk kinases at concentrations higher than those requiredfor HER1/EGFR tyrosine kinase inhibition; such findings suggest thatmaximal inhibition of HER1/EGFR, requiring high erlotinib doses, isnecessary for optimum antitumor activity. These considerations aresupported by tumor models, including non-small-cell lung cancermodels, showing dose-related antitumor effects up to high doses oferlotinib. Erlotinib exhibits additive antitumor effects when combinedwith chemotherapeutic agents (cisplatin, doxorubicin, paclitaxel,gemcitabine [Gemzar], and capecitabine [Xeloda]), radiation therapy,and other targeted agents (eg, bevacizumab [Avastin]). Recent studiesindicate that erlotinib inhibits the EGFRvIII mutant at concentrationshigher than those required for inhibition of wild-type receptor. Ongoinginvestigation will help to determine optimal dosing and dose frequencyof erlotinib in various cancers in the clinical setting.


Site Logo

Risk Models for Neutropenia in Patients With Breast Cancer

November 1st 2003

Breast cancer is the most common noncutaneous malignancy inwomen in industrialized countries. Chemotherapy prolongs survival inpatients with early-stage breast cancer, and maintaining the chemotherapydose intensity is crucial for increasing overall survival. Manypatients are, however, treated with less than the standard dose intensitybecause of neutropenia and its complications. Prophylactic colonystimulatingfactor (CSF) reduces the incidence and duration of neutropenia,facilitating the delivery of the planned chemotherapy doses.Targeting CSF to only at-risk patients is cost-effective, and predictivemodels are being investigated and developed to make it possible forclinicians to identify patients who are at highest risk for neutropeniccomplications. Both conditional risk factors (eg, the depth of the firstcycleabsolute neutrophil count nadir) and unconditional risk factors(eg, patient age, treatment regimen, and pretreatment blood cell counts)are predictors of neutropenic complications in early-stage breast cancer.Colony-stimulating factor targeted toward high-risk patients startingin the first cycle of chemotherapy may make it possible for fulldoses of chemotherapy to be administered, thereby maximizing patientbenefit. Recent studies of dose-dense chemotherapy regimens with CSFsupport in early-stage breast cancer have shown improvements in disease-free and overall survival, with less hematologic toxicity than withconventional therapy. These findings could lead to changes in how earlystagebreast cancer is managed.


Site Logo

Current Role of Irinotecan in the Treatment of Non-Small-Cell Lung Cancer

September 1st 2002

Lung cancer remains the primary cause of cancer-related death in both men and women in the United States. Chemotherapy has been shown to provide a survival benefit in patients with advanced non-small-cell lung cancer (NSCLC), and current regimens have produced median survivals of approximately 8 months and 1-year survival rates of 30% to 35% in patients with stage IIIB and IV disease. Nevertheless, there remains room for improvement. Irinotecan (CPT-11, Camptosar) has demonstrated efficacy in the treatment of small-cell lung cancer (SCLC). It also appears to have promising activity in advanced NSCLC, producing overall response rates of up to 32%. Combinations of irinotecan and cisplatin or carboplatin (Paraplatin) have resulted in overall response rates of 25% to 56% in phase II and III studies in patients with advanced disease, with median survivals ranging from 9 to 13 months and 1-year survival rates of 33% to 58%. Current irinotecan-based doublet and triplet regimens appear to produce promising response rates with manageable toxicities. In addition, irinotecan has demonstrated potential as a radiosensitizing agent and is currently being evaluated in several trials of combined-modality therapy in patients with locally advanced NSCLC. Early trials of irinotecan in combination with cisplatin or carboplatin along with radiation therapy have reported overall response rates of 60% to 67%. The approach appears to have potential and warrants further study. [ONCOLOGY 16:1153-1168, 2002]

© 2024 MJH Life Sciences

All rights reserved.